Creating a Trainee-Level Longitudinal Education Database: Conceptual and Methodological Considerations

Perri Morgan, PA-C, PhD
Brandi Leach, PhD
Objectives

• Discuss potential uses of a longitudinal educational database.

• Describe examples of education studies using longitudinal databases.

• Summarize a conceptual approach to creating education databases.

• Identify existing sources of information for inclusion into a database.

• Describe processes associated with development and maintenance of a longitudinal database.
Why longitudinal?

• Longitudinal analysis allows analysis of changes at both the group and the student levels.
 – As educators, we are interested in changes in our students/graduates over time.

• This is the example we give our students when explaining our Education Research Database (ERD):
Cross-sectional vs. longitudinal data:
An example

Anne and Sue both respond to a survey about their attitudes toward working in surgery.

| How likely are you to choose a career as a surgical PA? (1-10 scale with 1= very unlikely and 10=very likely) |
|---|---|
| Student | 1st year response | Response at graduation |
| Anne | 1 | 10 |
| Sue | 10 | 1 |
An example: **Cross-sectional data**

<table>
<thead>
<tr>
<th>How likely are you to choose a career as a surgical PA? (1-10 scale with 1= very unlikely and 10=very likely)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mean student response</td>
</tr>
</tbody>
</table>

Conclusion: Student attitudes toward working in surgery do NOT change over the course of their PA education.
An example: **Longitudinal data**

<table>
<thead>
<tr>
<th>How likely are you to choose a career as a surgical PA? (1-10 scale with 1= very unlikely and 10=very likely)</th>
<th>Absolute value of change in student response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>1st year response</td>
</tr>
<tr>
<td>Y</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>10</td>
</tr>
</tbody>
</table>

Conclusion: Student attitudes about working in surgery change during their PA education.

For the longitudinal analysis, we have to be able to link each student’s first response to their later response.
Reasons we chose a student-level, longitudinal approach

• We want to avoid the potential fallacy of equating group changes with individual change.

• We will be able to limit some research to students/trainees with certain characteristics.

• We collect data at the individual level anyway—why not use them?
An essential question

• Will our student-level education database be used for program evaluation or for research, or both?
Research vs. Evaluation

Research
- Produces generalizable knowledge
- Uses scientific methods
- Requires human subjects review (IRB)

Evaluation
- Intent is to improve a *specific* program
- Findings are expected to directly impact a program and to identify potential improvements
- Geared toward program decision-making
- Sometimes does not require human subjects review (IRB)
Why might you want a longitudinal database for **evaluation** purposes?

- To help organize your data
- To use for program improvement
- To analyze issues specific to your students or your program
 - Ex: Does a specific admissions factor predict a specific problem in your program?
 - Ex: Does a specific educational intervention work better for a particular type of student in your program?
- You do not want to deal with human subjects review and informed consent (but we think this is a weak excuse!)
Why would you want a longitudinal database for research?

• To share your findings with other programs and the education community
• To help your faculty produce research
• To facilitate use of previously collected data into research on new questions
 – This might lead to shorter surveys and
 – This might reduce survey fatigue among your students
• You might be able to combine your program data with those of other institutions in the future
When does evaluation NOT require human subjects review?

• When the activity does not involve non-standard interventions
• The intent is to only provide information for and about the setting in which it is conducted
• The activity is part of standard operating procedures
Human subjects review: Our experience

• We have a separate protocol approved for creation of the database.
 – Each new survey that is added to the database requires IRB approval. So do alterations to existing surveys.
 – These are expedited, with 2-3-day turnaround.
• Any research using the database will require individual protocols.
Examples of education research using longitudinal databases

• Jefferson Medical School started a longitudinal database in 1970.
 – Over 150 articles have been published based on it.

Our current project

• The Education Research Database (ERD) is a permanent database that contains extensive longitudinal student-level data from the Duke PA Program (DPAP).

• Data collection starts with the admissions process and will continue throughout DPAP graduates’ professional lives.

• Supports research on PA selection, training, and practice.
Duke PA Program
Education Research Database (ERD)

Conceptual Approach – Big Picture

PRE-PA SCHOOL

DURING PA SCHOOL

POST-PA SCHOOL
Pre-PA School Data Sources

- Admissions data
- New student survey
During PA School Data Sources

- Midpoint student survey
 - Repeats select items from new student survey
- Academic data during PA training
- PANCE (certification exam) pass/fail
- Graduation student survey
Post-PA School
Data Sources

- New graduate survey
- Practice-related data
 - Claims data
 - State medical board sanctions data
Examples of research questions with ERD

• What student characteristics predict admission into the Duke PA program?
 – Pre-PA School → PA School

• Which PA program experiences are associated with post-graduate leadership positions?
 – PA School → Post-PA School

• What PA program experiences are associated with the delivery of high-quality care?
 – PA School → Post-PA School
A PCTE longitudinal database?

- Additional post-graduation data collection could facilitate assessment of HRSA PCTE outcomes of interest including:
 - Rate of program graduates practicing in primary care or underserved areas at least 1 year after program completion
 - Type/amount of patient services provided by program graduates
 - Quality of care provided by program graduates
 - Care delivery by trainees and faculty at PCTE clinical training sites including the quality and cost of care, and patient service

- What additional variables would be required?
- What potential issues might arise?
ERD Data Points: Post-Graduation

Professionalism
- Medical board action
- Leadership positions

Practice
- In active practice?
- Practice characteristics
 - Specialty
 - Location
 - Payment

Recertification
- PANRE
- CME
- QI

Care outcomes
- Cost of care
- Quality of care
- Access to care

Post graduate training
- Clinical
- Non-clinical

SES
- Clinical income
- Loan repayment program participation

Psychosocial
- Job satisfaction
- Stress/burnout

Potential Additional Variables
- X
- Y

HRSA PCTE Outcomes of Interest

<table>
<thead>
<tr>
<th>Research Question</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of program graduates practicing in primary care</td>
<td>Post-graduation survey that asks for practice specialty</td>
</tr>
<tr>
<td>Quality of care provided by program graduates</td>
<td>Use provider ID to link to claims data and regulatory board actions.</td>
</tr>
<tr>
<td>Patient services provided by program graduates</td>
<td>Use provider ID to link to claims data: types of services provided (e.g., do primary care physicians deliver babies?), productivity numbers (# visits per year, etc).</td>
</tr>
</tbody>
</table>

Use provider ID to Quality of care link to claims data provided by program and regulatory graduates board actions.
• Let’s take a break for questions and discussion

• But hold your questions about nuts and bolts, because we will discuss them next.
Nuts and bolts
Data that are NOT included

• Data not included because anonymity is necessary
 – Student evaluations of courses
 – Other student evaluations of the program (exit survey, etc.)

• Data not included because we consider them mandatory for every student
 – Data required for reporting to HRSA for grant applications and progress reports (data for determining # of disadvantaged students, etc.)
Practical issues

• Student participation
• Obtaining informed consent
• Privacy protection
• Choosing software
• Maintenance of database
• Linking data
Student participation and retention in longitudinal research

While students are in your program
• Program leadership emphasizes the contribution that students can make to knowledge about the profession by participating
 – Reiterate importance of student contributions before each new survey
• Provide incentives, such as snacks

After students leave your program
• Identify a student to act as a “champion” for your research database after graduation
• Offer incentives for survey completion
• Share results of any research using the database with students
Informed consent

• We give a 10-minute presentation to new students about the database and distribute the consent forms electronically.

• The next day, in the classroom, staff distributes paper consent forms and collects them. Faculty are not present.

• In order to obtain application data for all applicants (including those not admitted), we added a one-paragraph consent statement to our supplemental application.
Privacy protection

• Faculty does not know which students consented to participate.
• Staff assign a database identifier to each student and keep the code with student names under lock and key.
• Faculty who wish to use the database will be issued limited datasets by staff that include only the variables required for their project.
• Even without student names, faculty could identify many students using other variables. However, this would be a breach of research ethics and would violate institutional and/or federal guidelines.
Secure storage

• Data on a protected server

• Access to identifiable data limited
 – For example, researchers are only given access to variables necessary for their project

• De-identified datasets are created for individual research projects
Choosing software

- Institutional resources
 - Any existing programs available through institution (e.g., REDCap)?
 - Support readily available?
- Interface preferences – overall usability, security issues
 - Desktop-based (e.g., Microsoft Access, FileMaker Pro)
 - Server-based (e.g., MySQL)
 - Web-based (e.g., REDCap, Medrio)
- Import/export file type options (e.g., SAS, Stata, SPSS, Excel, others)
- Cost
Database software options

<table>
<thead>
<tr>
<th>Software</th>
<th>Website</th>
<th>Where is database located?</th>
<th>Data export options</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDCap</td>
<td>http://www.project-redcap.org/</td>
<td>On Internet; need user rights to access</td>
<td>Excel, PDF, SPSS, SAS, Stata, R</td>
<td>Institutional partnership required; no cost</td>
</tr>
<tr>
<td>Medrio</td>
<td>http://medrio.com/</td>
<td>On Internet; need user rights to access</td>
<td>Excel, SAS, SPSS, STATA</td>
<td>Free for investigator-initiated trials; $1200/year once you hit 100k data points</td>
</tr>
<tr>
<td>OpenClinica</td>
<td>https://www.openclinica.com/</td>
<td>On user’s computer (after free download)</td>
<td>HTML, tab-delimited, Excel, SPSS</td>
<td>Open source; no cost</td>
</tr>
<tr>
<td>QuesGen</td>
<td>http://www.quesgen.com/</td>
<td>On Internet; need user rights to access</td>
<td>Stats packages and Excel</td>
<td>Pay as you use, with per-user, per-month charge as set-up fee</td>
</tr>
</tbody>
</table>
Linking data

- Format matters
- IRB issues
- Data use agreements
- Data cleaning
The future

One big database for all of our programs?
References